As low as $19/month auto insurance

http://survetykiuyt.best/l5TtpJHxeIBDqF1snWQ6y7yhte7DGw-5qQrgL6HS5ArpjT8

http://survetykiuyt.best/yeNpWfh79NIC260-Ag3poZHvuZp4DaqTDsc1LlfLP9tvET4

dies agree on a Cretaceous age for the most recent common ancestor of modern birds but estimates range from the Early Cretaceous to the latest Cretaceous. Similarly, there is no agreement on whether most of the early diversification of modern birds occurred in the Cretaceous and associated with breakup of the supercontinent Gondwana or occurred later and potentially as a consequence of the Cretaceous–Palaeogene extinction event. This disagreement is in part caused by a divergence in the evidence; most molecular dating studies suggests a Cretaceous evolutionary radiation, while fossil evidence points to a Cenozoic radiation (the so-called 'rocks' versus 'clocks' controversy).

The discovery of Vegavis from the Maastrichtian, the last stage of the Late Cretaceous proved that the diversification of modern birds started before the Cenozoic era. The affinities of an earlier fossil, the possible galliform Austinornis lentus, dated to about 85 million years ago, are still too controversial to provide a fossil evidence of modern bird diversification. In 2020, Asteriornis from the Maastrichtian was described, it appears to be a close relative of Galloanserae, the earliest diverging lineage within Neognathae.

Attempts to reconcile molecular and fossil evidence using genomic-scale DNA data and comprehensive fossil information have not resolved the controversy. However, a 2015 estimate that used a new method for calibrating molecular clocks confirmed that while modern birds originated early in the Late Cretaceous, likely in Western Gondwana, a pulse of diversification in all major groups occurred around the Cretaceous–Palaeogene extinction event. Modern birds would have expanded from West Gondwana through two routes. One route was an Antarctic interchange in the Paleogene. The other route was probably via Paleocene lan